NY-NJ OUTER HARBOR GATEWAY

Dennis V Padron MSc, PE, ASCE, Executive Vice President Halcrow

and

Graeme Forsyth BSc (Hons), CEng, FICE, FIES, Director Halcrow

31st March 2009

NY-NJ Outer Harbor Gateway

Content of Presentation

- Background
- Location and Concept
- Potential Barrier Issues
- Gate Requirements
- Gate Types
- Sluice Requirements
- Sluice Types

- Causeway Requirements
- Causeway Types
- Berm Requirements
- Berm Types
- Construction Issues
- Construction Cost
- Where do we go from here
- Questions

NY-NJ Outer Harbor Gateway

Background

Top ten cities (in terms of assets) with highest exposure and vulnerability to climate extremes:

- Miami
- Greater New York
- New Orleans
- Osaka-Kobe
- Tokyo
- Amsterdam
- Rotterdam
- Nagoya
- Tampa-St Petersburg
- Virginia Beach

New York Observer

NY-NJ Outer Harbor Gateway

Background

- Previous presentations include storm-surge barriers at:
 - the upper East River
 - the Narrows
 - the mouth of the Arthur Kill
- This presentation discusses an alternative to the latter two:
 - the Outer Harbor Gateway barrier across the mouth of the New York Bight

Kalcrow

NY-NJ Outer Harbor Gateway

Background

- New York Harbor at apex of New York Bight
- Hydrodynamics dominated by oceanic boundary and inland flows, primarily the Hudson River

NY-NJ Outer Harbor Gateway

Location and Concept

Outer Harbor Gateway Barrier System

- Spans mouth of the New York Bight between Sandy Hook and Breezy Point
- Protects most of the greater New York area from flooding
- Includes terrain enhancements along Sandy Hook and Rockaway peninsulas

Considerations

- Barrier opacity, number of openings, sluices and circulation, flow velocities
- Timing of closure, fluvial flow build-up, outflanking, operational procedures
- Environmental
- Socio-political

NY-NJ Outer Harbor Gateway

Location and Concept

NY-NJ Outer Harbor Gateway

Potential Barrier Issues

NY-NJ Outer Harbor Gateway

Gate Requirements

Withstand the Flood Event

- Exposed location open to Atlantic
- Overall height around 80 ft (normal water depth 50 ft)
- Potential for future channel deepening

Available on Demand

- Navigable by ocean going ships (width and depth of channel)
- Structural, mechanical and electrical maintenance
- Able to be deployed in bad weather (high winds + large waves)

NY-NJ Outer Harbor Gateway

Gate Types

NY-NJ Outer Harbor Gateway

NY-NJ Outer Harbor Gateway

Large Radius Vertical Axis Sector Gates

NY-NJ Outer Harbor Gateway

Ambrose Channel Gates

Ambrose Channel 2,000 ft wide

Each gate channel 600 ft wide

Control island 800 ft wide

NY-NJ Outer Harbor Gateway

Sandy Hook Channel Gate

Lifting gate 300 ft wide

NY-NJ Outer Harbor Gateway

NY-NJ Outer Harbor Gateway

Sluice Requirements

Water Quality

- Provides water circulation vents
- Provides potential control of flushing actions
- Allow passage of marine life
- Influences environmental impact

Operational issues

- Provides control of water velocities
- Influences sedimentation

Defense issues

- Improves defense reliability
- Improves control over closure timing

NY-NJ Outer Harbor Gateway

Sluice Types

NY-NJ Outer Harbor Gateway

Horizontal Axis Sector Sluice

- 80± ft wide
- Groups of 10±
- Sufficient number to provide required opacity

NY-NJ Outer Harbor Gateway

Causeway Requirements

Connect the Gates

- Span over 5 miles across apex of New York Bight
- Lowest feasible environmental impact
- Minimize socio-economic issues such as recreation value and aesthetics
- Possible multi-use options (highway/utilities)

Withstand Normal and Storm Conditions

- Structural stability against aggressive wave climate (both operational and storm conditions)
- Low/minimal maintenance and risk
- Available material for construction

Kalcrow

NY-NJ Outer Harbor Gateway

Causeway Types

OPTION	PRINCIPAL MATERIAL
Armor rock (rubble mound)	Rock
Concrete armor units	Rock and Concrete
Caissons	Concrete and fill
Connected piers (such as Oosterscheld)	Concrete and steel

NY-NJ Outer Harbor Gateway

Causeway Types

NY-NJ Outer Harbor Gateway

Armor Rock Causeway

NY-NJ Outer Harbor Gateway

Berm Requirements

Deflect and Mitigate Surge Waters

- Extent relative to topography and consideration of factors (10± miles)
- Construct without critical impacts on housing/businesses, access routes and environmental/landscape

Withstand Flood Event

- Increase land elevation sufficiently to withstand predicted design life surge
- Structural stability against low-frequency occurrence
- Inoperable during normal/operational conditions
- Issues of seepage

Kalcrow

NY-NJ Outer Harbor Gateway

Berm Types

OPTION	PRINCIPAL MATERIAL
Articulated concrete blocks / mattresses (usually connected by steel wires / rods)	Concrete
Gabion structures (metal wire baskets)	Rock and steel
Grouted or cemented slopes	Grout/cement
Reinforced and vegetative soils	Earth and geotextile
Impervious layers such as asphalt and bituminous pavement	Asphalt or bitumen
Flexible structures such as geotubes	Geotextile and sand

NY-NJ Outer Harbor Gateway

Berm Types

NY-NJ Outer Harbor Gateway

Construction Issues

NY-NJ Outer Harbor Gateway

Gate Construction

- Ambrose Channel Gates Phased Construction
 - Navigation restricted to half channel width during construction phase
 - First gate and control island constructed within cofferdam
 - After first gate completed, second gate constructed within cofferdam

- Sandy Hook and Rockaway Inlet Gates
 - Channel closed throughout construction
 - Constructed within cofferdam

NY-NJ Outer Harbor Gateway

Causeway Construction

NY-NJ Outer Harbor Gateway

Construction Cost

Ambrose Channel Gate Complex and Road Tunnel

Berms (terrain enhancement)

Sandy Hook Gate and Tunnel

Sluice Gate Complexes (10)

Causeway

Rockaway Inlet Gate and Bridge

Relative Cost

Total = \$5.9 billion \$1 billion/mile of causeway

NY-NJ Outer Harbor Gateway

Existing Barriers

Oosterschelde barrier, Netherlands

- 5 mi (2 mi barrier + islands)
- Concrete piers with closable steel sides
- Estimated \$3.4B (\$1.7B/mi)
- Opened 1986

Maeslant, Netherlands

- 1,200 ft opening
- Moveable steel radius arms
- Estimated \$0.86B (\$4.3B/mi)
- Opened 1997

Lake Borgne IHNC barrier, New Orleans

- Design in progress
- Proposed 2 mile width with 150 ft navigation gates
- Estimated \$0.7B (\$0.35B/mi)
- Expected completion 2011

Thames barrier, United Kingdom

- 1,700 ft channel
- Circular hollow steel segments rotated between concrete piers
- Estimated \$1.9B (\$5.9B/mi)
- Opened 1982

St. Petersburg, Russian Federation

- 15 mi, across Gulf of Finland / Neva Bay
- 11 rock and earth embankments,
 2 navigation passes (large radius gates),
 6 water exchange complexes
- Estimated \$6.4B (\$0.5B/mi)
- Expected completion 2010

NY-NJ Outer Harbor Gateway

Kalcrow

NY-NJ Outer Harbor Gateway

Where do we go from here?

Further Development

- Gaining political and socio-economic will
- Studies to realize benefits, risks and consequences (human and financial)
- Investigation into options
- Preferred solution

Kalcrow

NY-NJ Outer Harbor Gateway

Questions

